Inkscape1.3は治ったけど,Twitter下書きしてないと返信書き途中きえるわ昔に戻ってる感.長さ固定が1,添付画像が2「m=sqrt(3)/2, t=Tan[pi/72], (d/dk)[sqrt(1-k^2)+(k*(1-t^2)-m*(1+t^2))/2/t]=0」 https://t.co/4Pp77A0mJ4 k=Cos[π/36],一点固定極大斜矢弦が3,2つの弓形内の線分を足した最大

0 0

생일 기념으로 넣은 것 랴(@ Lia___S2 )과 @
squrt1∞(@ sqrt100)님 커미션~

1 7

. 『sqrt(佐久間まゆ*夢見りあむ)』
(sqrt(Mayu Sakuma*Riamu Yumemi))

1 2

自動生成された数式による絵画。🖼️
今回の数式はこれ atan(_a) + acos(_a) * pow(_a, 2) % asin(_a) * pow(_a, -2) % sqrt(_b) - asin(_b)
関数をめちゃくちゃに組み合わせてるだけだから、面白いと思える絵が出るのは50回に1回ぐらい。😂

2 10

I have come here to explore function spaces & strain models, ...and I'm all out of function spaces.

Same prompt: "$$f = {1\over 2\pi} \sqrt{{k \over m}}$$ fantasy art"

0 3

sqrt(cos(x))*cos(300x)+sqrt(abs(x))-0.7)*(4-x*x)^0.01 sqrt(6-x^2)

(Oc, not bl)
Fred, Seb

2 5

WolframAlpha「(sqrt(a^2+b^2)-a)*(sqrt(a^2+b^2)+b+a)^2-(sqrt(a^2+b^2)+a)*(sqrt(a^2+b^2)+b-a)^2」 https://t.co/rLxZysnQiI ≡0、「(1-cos[x])*(1+sin[x]+cos[x])^2-(1+cos[x])*(1+sin[x]-cos[x])^2」 https://t.co/XrLhrmn3eQ ≡0。という恒等式が一見不明だったけどx=2*tとでもすれば、2*sin^2 [

0 0

F d=max(d,(1.2-length(sqrt(abs(mod(p*s,2.)-1.))))/s);p+=s*=1.7
float l=.01,d=l,s=.3,i;vec3 O=vec3(s,1,t),p,D=vec3((FC.xy*2.-r)/r.y,s)*rotate3D(t,O.xxy);for(;i<1.&&d>1e-4;i+=.01){p=O+D*l;d=0.;s=3.;F;F;l+=F;}F;o.rgb+=hsv(l,.2/l,i+d*s);

https://t.co/hlJ5Aze6ex

5 16

1 - 1,444 --> sqrt(−0.444) =
Keep it Real

0 0


(sqrt((1+sqrt(2))/8)+sqrt((1+sqrt(2))/8)i)(z^2+1/z^2)

9 35

setup=_=>{createCanvas(w=720,w,WEBGL),shader(createShader(`attribute vec3 a${c};void main(){gl_${c}=vec4(a${c},1.)*2.-1.;}`,`precision lowp float;void main(){vec2 p=sqrt(gl_FragCoord.xy);gl_FragColor=vec4(9./dot(cos(p),p),p,1.);}`)),rect(0,0,w)};c="Position";//#つぶやきProcessing

1 12

float i,d=.1,s;vec3 p,n=vec3(-3);for(i=0.;i++<64.&&d>1e-4;){p=vec3((FC.xy-r*.5)/r.y,.3)*s*4.;p.z+=8.;p.xz*=rotate2D(mod(t*.2,5.));for(int j;j++<6;){p=abs(p)-1.;d=1.-sqrt(p.y)-.1;d>0.?d-=min(d-.1,max(p.y+.2,dot(p.x,p.z))):d;}s+=d;}o+=vec4(5,3,3,1)/i;

3 9

size(720,720,P2D)
frameRate(1)
f=open("a","w")
f.write("void main(){vec2 v=(gl_FragCoord.xy-360)/360.;float q=atan(v.x,v.y);float a=abs(cos(5.*q)*sin(q+sqrt(length(v))*16))*.8;gl_FragColor=vec4(1.-vec3(0,a+.1,a+.3),1);}")
f.close()
filter(loadShader("a"))

5 21

Well if we do the math
Substitute = cos\alp,\alp∈[0:;π] \Then\; |x+\sqrt{1-x^2}|=\sqrt{2}(2x^2-1)\Leftright |cos\alp +sin\alp |=\sqrt{2}(2cos^2\alp -1)Then∣x+ 1−x 2 ​ ∣= 2 ​ (2x 2)

= You lonely asf

0 1

setup=_=>{createCanvas(w=720,w)//#つぶやきProcessing
C=['#fbb','#694','#333','#fff']
a=new Date()%2
fill(C[a])
stroke(C[a+2])
v=40
u=10*sqrt(3)
f=s=>triangle(0,0,20,0,30,s*u)
for(k=v*v;k--;){
push()
translate(k%v*30,u*2*(k/v|0)-k%v*u)
for(i=6;i--;)rotate(PI/3),f(1),f(-1)
pop()}
}

5 11

. Perhaps sin(sin(cos((x^3-y^3)))+abs(sin(x)+hypot(x,y)))-atan(sin(atan(avg(x,y))))+abs(sqrt(x))*c*abs(x*x-x*x).

0 1

菱形十二面体を置くための台
空間充填したい時あると便利かも
z = ( acos( cos(x) ) + acos( cos(y) ) ) / sqrt(2)

0 2

This was fun. Thanks ! These are all the roots of quadratics with integer coef from -200 to 200. The colored versions color the point by the size of the sqrt(discriminant). Zoom ins are the last two images. ( https://t.co/9MruLhzauW )

3 20